Ingat bahwa persamaan linear adalah persamaan yang mengandung variabel berpangkat satu. Sistem persamaan pada soal tersebut disebut sistem persamaan linear tiga variabel SPLTV. Dengan menggunakan metode eliminasi-substitusi, himpunan penyelesaian dari sistem persamaan tersebut yaitu Misal maka, sistem persamaan menjadi Eliminasi dari persamaan dan . Eliminasi dari persamaan dan . Eliminasi dari persamaan dan . Subtitusikan ke persamaan . Subtitusikan ke persamaan . Sehingga Dengan demikian, himpunan penyelesaian adalah .
ο»Ώ1 Diketahui x + 3y + 2z = 16, 2x + 4y - 2z = 12, dan x + y + 4z = 20. Tentukan nilai x, y, z! Pembahasan: Substitusi x + y + 4z = 20 x = 20 - y - 4z x + 3y + 2z = 16 (20 - y - 4z) + 3y + 2z = 16 2y - 2z + 20 = 16 2y - 2z = 16 - 20 2y - 2z = -4 y - z = -2 2x + 4y - 2z = 12 2 (20 - y - 4z) + 4y - 2z = 12 40 - 2y - 8z + 4y - 2z = 12
Sistem Persamaan Linear Tiga Variabel- merupakan bentuk perluasan dari sistem persamaan linear dua variabel SPLDV. Yang mana, pada sistem persamaan linear tiga variabel terdiri dari tiga persamaan yang masing-masing persamaan memiliki tiga variabel misal x, y dan z.Dengan begitu, bentuk umum dari Sistem Persamaan Linear Tiga Variabel dalam x, y, dan z dapat dituliskan seperti berikut iniDengan a, b, c, d, e, f, g, h, i, j, k, dan l atau a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, dan d3 adalah bilangan-bilangan e, I, a1, a2, a3 = koefisien dari xb, f, j, b1, b2, b3 = koefisien dari yc, g, k, c1, c2, c3 = koefisien dari zd, h, i, d1, d2, d3 = konstantax, y, z = variabel atau peubahCiri Ciri Sistem Persamaan Linear Tiga Variabel SPLTVHal Hal yang Berhubungan dengan SPLTVSyarat SPLDV Memiliki Satu PenyelesaianCara Penyelesaian SPLDV1. Metode Subtitusi2. Metode Eliminasi3. Metode Gabungan atau CampuranSebuah persamaan disebut sebagai sistem persamaan linear tiga variabel jika persamaan tersebut mempunyai karakteristik seperti berikut iniMemakai relasi tanda sama dengan =Mempunyai tiga variabelKetiga variabel tersebut mempunyai derajat satu berpangkat satuHal Hal yang Berhubungan dengan SPLTVMemuat tiga komponen atau unsur yang selalu berhubungan dengan sistem persamaan linear tiga komponen tersebut yaitu suku, variabel, koefisien dan konstanta. Berikut ini merupakan penjelasan dari masing-masing komponen SPLTV SukuSuku merupakan sebuah bagian dari suatu bentuk aljabar yang terdiri atas variabel, koefisien dan konstanta. Setiap suku dipisahkan dengan menggunakan tanda baca penjumlahan maupun β y + 4z + 7 = 0, maka sukuβsuku dari persamaan tersebut yaitu 6x , -y, 4z dan VariabelVariabel merupakan peubah atau pengganti dari suatu bilangan yang pada umumnya dilambangkan dengan pemakaian huruf seperti x, y dan mempunyai 2 buah apel, 5 buah mangga dan 6 buah jeruk. Apabila kita tulis dalam bentuk persamaan makaContoh apel = x , mangga = y dan jeruk = z, sehingga persamannya yaitu 2x + 5y + KoefisienKoefisien merupakan sebuah bilangan yang menyatakan banyaknya suatu jumlah variabel yang sejenis. Koefisien disebut juga sebagai bilangan yang terdapat di depan variabel, sebab penulisan dari suatu persamaan koefisien berada di depan mempunyai 2 buah apel, 5 buah mangga dan 6 buah jeruk. Apabila kita tuliskan ke dalam bentuk persamaan makaContoh apel = x , mangga = y dan jeruk = z, sehingga persamannya yaitu 2x + 5y + 6z. Dari persamaan tersebut, maka dapat diketahui bahwa 2, 5 dan 6 merupakan koefisien di mana 2 merupakan koefisien x , 5 merupakan koefisien y serta 6 merupakan koefisien KonstantaKonstanta merupakan sebuah bilangan yang tidak diikuti dengan variabel, sehingga akan mempunyai nilai yang tetap atau konstan untuk berapa pun nilai variabel atau + 5y + 6z + 7 = 0, dari persamaan tersebut konstantanya yaitu 7. Sebab, 7 nilainya tetap dan tidak terpengaruh dengan berapa pun SPLDV Memiliki Satu PenyelesaianSebuah sistem persamaan linier 3 variabel akan tepat mempunyai suatu penyelesaian atau satu himpunan penyelesaian apabila dapat memenuhi syarat atau ketentuan seperti di bawah iniTerdapat lebih dari satu atau ada tiga persamaan linier tiga variabel yang + y + z = 5x + 2y + 3z = 62x + 4y + 5z = 9Persamaan Linier Tiga Variabel yang membentuk Sistem Persamaan Linier Tiga Variabel, bukan merupakan Persamaan Linier Tiga Variabel yang β 3y + z = β52x + z β 3y + 5 = 04x β 6y + 2z = β10Ketiga persamaan di atas adalah sistem persamaan linear tiga variabel yang sama sehingga tidak mempunyai tepat satu himpunan Penyelesaian SPLDVBentuk umum dari sistem persamaan linear tiga variabel bisa kita tuliskan seperti di bawah iniApabila nilai x = x0, y = y0, dan z = z0, ditulis dengan pasangan terurut x0, y0, z0, memenuhi SPLTV di atas, maka haruslah berlaku hubungan sebagai hal yang seperti itu, x0, y0, z0 disebut sebagai penyelesaian sistem persamaan linear tersebut serta himpunan penyelesaiannya ditulis sebagai {x0, y0, z0}.Sebagai contoh, adanya SPLTV seperti di bawah ini2x + y + z = 12x + 2y β z = 33x β y + z = 11SPLTV di atas memiliki penyelesaian 3, 2, 4 dengan himpunan penyelesaiannya yaitu {2, 3, 4}. Untuk membuktikan kebenaran bahwa 3, 2, 4 adalah penyelesaian dari SPLTV tersebut, maka subtitusikanlah nilai dari x = 3, y = 2 dan z = 4 ke dalam persamaan 2x + y + z = 12, x + 2yβ z = 3 dan 3x β y + z = 11, sehingga akan kita dapatkanβ 23 + 2 + 4 = 6 + 2 + 4 = 12, benarβ 3 + 22 β 4 = 3 + 4 β 4 = 3, benarβ 33 β 2 + 4 = 9 β 2 + 4 = 11, benarPenyelesaian atau himpunan penyelesaian dari sebuah sistem persamaan linear tiga variabel SPLTV bisa di cari dengan menggunakan beberapa cara atau metode, antara lain dengan menggunakanMetode subtitusiMetode eliminasiMetode gabungan atau campuranMetode determinanMetode invers matriksBerikut akan kami berikan ulasan dari metode subtitusi, eliminasi dan gabungan pada sistem persamaan linear tiga variabel SPLTV 1. Metode SubtitusiBerikut ini merupakan tahapan yang digunakan untuk menyelesaikan SPLTV dengan metode subtitusi, antara lainTahap 1Pilihlah salah satu persamaan yang paling sederhana, lalu nyatakan x sebagai fungsi y dan z, atau y sebagai fungsi x dan z, atau z sebagai fungsi x dan 2Subtitusikan x atau y atau z yang kita dapatkan di tahap pertama ke dalam dua persamaan yang lainnya. Sehingga akan kita peroleh sistem persamaan linear dua variabel SPLDV.Tahap 3Menyelesaikan SPLDV yang ada pada tahap nomor kalian lebih paham mengenai cara penyelesaian SPLTV dengan menggunakan metode subtitusi, berikut kami berikan beberapa contoh soal dan himpunan penyelesaian SPLTV di bawah ini dengan menggunakan metode subtitusix β 2y + z = 63x + y β 2z = 47x β 6y β z = 10JawabLangkan pertama adalah menentukan terlebih dahulu persamaan yang paling sederhana. Dari ketiga persamaan tersebut, persamaan pertama adalah yang paling sederhana. Dari persamaan pertama, nyatakan variabel x sebagai fungsi y dan z seperti berikut iniβ x β 2y + z = 6β x = 2y β z + 6Subtitusikan variabel atau peubah x ke dalam persamaan keduaβ 3x + y β 2z = 4β 32y β z + 6 + y β 2z = 4β 6y β 3z + 18 + y β 2z = 4β 7y β 5z + 18 = 4β 7y β 5z = 4 β 18β 7y β 5z = β14 β¦β¦β¦β¦β¦ Pers. 1Subtitusikan variabel x ke dalam persamaan ketigaβ 7x β 6y β z = 10β 72y β z + 6 β 6y β z = 10β 14y β 7z + 42 β 6y β z = 10β 8y β 8z + 42 = 10β 8y β 8z = 10 β 42β 8y β 8z = β32β y β z = β4 β¦β¦β¦β¦β¦β¦ Pers. 2Persamaan 1 dan 2 membentuk SPLDV y serta z7y β 5z = β14y β z = β4Kemudian menyelesaikan SPLDV di atas dengan menggunakan metode subtitusi. Pilih salah satu persamaan yang paling sederhana. Pada hal ini persamaan kedua merupakan persamaan yang paling sederhana. Dari persamaan kedua, maka kita dapatkanβ y β z = β4β y = z β 4Subtitusikan peubah y ke dalam persamaan pertamaβ 7y β 5z = β14β 7z β 4 β 5z = β14β 7z β 28 β 5z = β14β 2z = β14 + 28β 2z = 14β z = 14/2β z = 7Subtitusikan nilai z = 7 ke salah satu SPLDV, sebagai contoh y β z = β4 sehingga akan kita dapatkanβ y β z = β4β y β 7 = β4β y = β4 + 7β y = 3Lalu, subtitusikan nilai y = 3 dan z = 7 ke salah satu SPLTV, sebagai contoh x β 2y + z = 6 sehingga akan kita dapatkanβ x β 2y + z = 6β x β 23 + 7 = 6β x β 6 + 7 = 6β x + 1 = 6β x = 6 β 1β x = 5Dengan begitu, kita dapatkan x = 5, y = 3 dan z = 7. Sehingga himpunan penyelesaian dari SPLTV soal tersebut yaitu {5, 3, 7}.Supaya memastikan bahwa nilai x, y, dan z yang didapatkan sudah benar, maka kita bisa mengetahuinya dengan cara mensubtitusikan nilai x, y, dan z ke dalam tiga SPLTV di atas. Antara lainPersamaan Iβ x β 2y + z = 6β 5 β 23 + 7 = 6β 5 β 6 + 7 = 6β 6 = 6 benarPersamaan IIβ 3x + y β 2z = 4β 35 + 3 β 27 = 4β 15 + 3 β 14 = 4β 4 = 4 benarPersamaan IIIβ 7x β 6y β z = 10β 75 β 63 β 7 = 10β 35 β 18 β 7 = 10β 10 = 10 benarDari data di atas, maka dapat dipastikan bahwa nilai x, y dan z yang kita dapatkan telah benar serta telah memenuhi sistem persamaan linear tiga variabel yang Metode EliminasiBerikut ini merupakan tahapan yang digunakan untuk menyelesaikan SPLTV dengan metode eliminasi, antara lainTahap 1Pilih bentuk peubah atau variabel yang paling 2Hilangkan atau eliminasi salah satu peubah contohnya x sehingga akan kita dapatkan 3Hilangkan atau eliminasi salah satu peubah SPLDV contohnya y sehingga akan kita dapatkan salah satu 4Eliminasi atau hilangkan peubah lainnya yakni z untuk mendapatkan nilai peubah yang 5Menentukan nilai peubah ketiga yakni x berdasarkan nilai y dan z yang kalian lebih paham mengenai cara penyelesaian SPLTV dengan menggunakan metode eliminasi, berikut kami berikan beberapa contoh soal dan memakai metode eliminasi, tentukan himpunan penyelesaian sistem persamaan linear tiga variabel di bawah inix + 3y + 2z = 162x + 4y β 2z = 12x + y + 4z = 20JawabLangkah awal yang kita lakukan adalah menentukan variabel mana yang akan dieliminasi terlebih mempermudah, kita pilih variabel yang paling ketiga SPLTV di atas, kita ketahui variabel yang paling sederhana yaitu x sehingga kita akan mengeliminasi x terlebih mengeliminasi variabel x, maka kita harus menyamakan koefisien masing-masing x dari ketiga persamaan. Perhatikan ulasan di bawah ini;x + 3y + 2z = 16 β koefisien x = 12x + 4y β 2z = 12 β koefisien x = 2x + y + 4z = 20 β koefisien x = 1Supaya ketiga koefisien x sama, maka akan kita kalikan persamaan pertama dan persamaan III dengan 2 sementara persamaan II kita kalikan 1. Berikut caranya x + 3y + 2z = 16 x2 β 2x + 6y + 4z = 322x + 4y β 2z = 12 x1 β 2x + 4y β 2z = 12 x + y + 4z = 20 x2 β 2x + 2y + 8z = 40Sesudah koefisien x ketiga persamaan telah sama, selanjutnya langsung saja kita kurangkan atau jumlahkan persamaan pertama dengan persamaan kedua dan persamaan kedua dengan persamaan ketiga sedemikian rupa sampai variabel x hilang. Berikut caranyaDari persamaan pertama dan kedua2x + 6y + 4z = 322x + 4y β 2z = 12 __________ β 2y + 6z = 20Dari persamaan kedua dan ketiga2x + 4y β 2z = 122x + 2y + 8z = 40 __________ β2y β 10z = -28Dengan begitu, maka kita dapatkan SPLDV seperti berikut ini2y + 6z = 202y β 10z = β28Langkah berikutnya yaitu menyelesaikan SPLDV di atas dengan menggunakan metode pertama adalah menentukan nilai y dengan mengeliminasi bisa mengeliminasi variabel z, maka kita harus menyamakan koefisien dari z kedua persamaan tersebut. Perhatikan ulasan di bawah + 6z = 20 β koefisien z = 62y β 10z = β28 β koefisien z = β10Supaya kedua koefisien z sama, maka persamaan pertama akan kita kalian dengan 5 sementara untuk persamaan kedua kita kali dengan itu, kedua persamaan tersebut kita jumlahkan. Berikut caranya2y + 6z = 20 Γ5 β 10y + 30z = 1002y β 10z = -28 Γ3 β 6y β 30z = -84 ___________ + 16y = 16 y = 1Kedua, kita mencari nilai z dengan cara mengeliminasi y. Untuk bisa menghilangkan variabel y, maka kita harus menyamakan koefisien y dari kedua persamaan koefisien y kedua persamaan telah sama, maka kita dapat langsung mengurangkan kedua persamaan tersebut. Berikut caranya2y + 6z = 202y β 10z = -28 __________ _ 16z = 48 z = 3Hingga di tahap ini maka kita telah mendapatkan nilai y = 1 dan z = yang terakhir, untuk memperoleh nilai x, kita subtitusikan nilai y dan z tersebut ke dalam salah satu SPLTV. Sebagai contoh persamaan x + y + 4z = 20 sehingga akan kita dapatkanβ x + y + 4z = 20β x + 1 + 43 = 20β x + 1 + 12 = 20β x + 13 = 20β x = 20 β 13β x = 7Dengan begitu, akan kita dapatkan nilai x = 7, y = 1 dan z = 3 sehingga himpunan penyelesaian dari SPLTV di atas yaitu {7, 1, 3}.3. Metode Gabungan atau CampuranPenyelesaian untuk sistem persamaan linear dengan memakai metode gabungan atau campuran adalah cara penyelesaian dengan cara menggabungkan dua metode yang dimaksud adalah metode eliminasi dan metode subtitusi. Metode ini dapat digunakan dengan menggunakan metode subtitusi terlebih dahulu atau dengan eliminasi terlebih kali ini, kita akan mencoba metode gabungan atau campuran dengan 2 teknik yakniMengeliminasi terlebih dahulu baru selanjutnya memakai metode terlebih dahulu baru lalu memakai metode hampir sama seperti yang terdapat pada penyelesaian SPLTV dengan metode eliminasi dan metode subtitusi. Agar kalian lebih paham mengenai cara penyelesaian SPLTV dengan menggunakan gabungan atau campuran ini, berikut kami berikan beberapa contoh soal dan himpunan penyelesaian dari sistem persamaan linear tiga variabel di bawah ini dengan memakai metode + 3y + 2z = 162x + 4y β 2z = 12x + y + 4z = 20JawabMetode Subtitusi SPLTVLangkah pertama menentukan persamaan yang paling sederhana. Dari ketiga persamaan di atas, dapat kita ketahui bahwa persamaan ketiga merupakan persamaan yang paling persamaan ketiga, nyatakan variabel z sebagai fungsi y dan z seperti berikut iniβ x + y + 4z = 20β x = 20 β y β 4z β¦β¦β¦β¦ Pers. 1Lalu, subtitusikan persamaan 1 di atas ke dalam SPLTV yang pertama.β x + 3y + 2z = 16β 20 β y β 4z + 3y + 2z = 16β 2y β 2z + 20 = 16β 2y β 2z = 16 β 20β 2y β 2z = β4β y β z = β2 β¦β¦β¦β¦. Pers. 2Kemudian, subtitusikan persamaan 1 di atas ke dalam SPLTV yang kedua.β 2x + 4y β 2z = 12β 220 β y β 4z + 4y β 2z = 12β 40 β 2y β 8z + 4y β 2z = 12β 2y β 10z + 40 = 12β 2y β 10z = 12 β 40β 2y β 10z = β28 β¦β¦β¦β¦ Pers. 3Dari persamaan 2 serta persamaan 3 kita dapatkan SPLDV y dan z seperti berikut iniy β z = β22y β 10z = β28 Metode Eliminasi SPLDVUntuk mengeliminasi atau menghilangkan y, maka kalikan SPLDV yang pertama dengan 2 supaya koefisien y kedua persamaan kita selisihkan kedua persamaan sehingga akan kita dapatkan nilai z seperti berikut iniy β z = -2 Γ2 β 2y β 2z = -42y β 10z = -28 Γ1 β 2y β 10z = -28 __________ β 8z = 24 z = 3Untuk menghilangkan z, maka kalikan SPLDV yang pertama dengan 10 supaya koefisien z pada kedua persamaan kita kurangkan kedua persamaan sehingga akan kita dapatkan nilai y seperti berikut iniy β z = -2 Γ10 β 10y β 10z = -202y β 10z = -28 Γ1 β 2y β 10z = -28 __________ β 8y = 8 z = 1Hingga tahap ini, kita dapatkan nilai y = 1 dan z = yang terakhir yakni menentukan nilai x. Cara untuk menentukan nilai x yaitu dengan cara memasukkan nilai y dan z tersebut ke dalam salah satu SPLTV. Sebagai contoh x + 3y + 2z = 16 sehingga akan kita dapatkanβ x + 3y + 2z = 16β x + 31 + 23 = 16β x + 3 + 6 = 16β x + 9 = 16β x = 16 β 9β x = 7Dengan begitu, maka kita dapatkan nilai x = 7, y = 1 dan z = 3 sehingga himpunan penyelesaian SPLTV dari soal di atas yaitu {7, 1, 3}.Demikianlah ulasan singkat terkait Sistem Persamaan Linear Tiga Variabel SPLTV yang dapat kami sampaikan. Semoga ulasan di atas dapat kalian jadikan sebagai bahan belajar kalian. 1pt Jika x, y, dan z penyelesaian dari SPLTV x+3y+z=0 x+3y+z = 0 2x-y+z=5 2xβy+z = 5 3x-3y+2z=10 3xβ3y+2z =10 maka nilai dari x . y . z = . - 4 - 3 - 2 2 4 Multiple Choice 30 seconds MatematikaALJABAR Kelas 10 SMASistem Persamaan LinearSistem Persamaan Linear Tiga VariabelDiketahui sistem persamaan tiga variabel berikut. 2/x+1+2/y-3+3/z+1=2 -4/x+1+1/y-3+6/z+2=5 4/x+1+5/y-3+3/z+1=2 Himpunan penyelesaian dari sistem persamaan tersebut adalah . . . .Sistem Persamaan Linear Tiga VariabelSistem Persamaan LinearALJABARMatematikaRekomendasi video solusi lainnya0149Jumlah tiga buah bilangan adalah 75 Bilangan pertama lima...0246Sistem persamaan x+z=3 2y-z=1 x-y=1 mempunyai penyelesaia...0146Tiga tahun lalu, jumlah usia Hesti, Ilham, dan Johan adal...0155Bu Sari mempunyai uang pecahan lima ribuan, sepuluh ribua...Teks videojadi pertama-tama kita untuk = 1 per x + 1 untuk punya = 1 dan hari ini digunakan untuk mempermudah kita dalam melakukan metode eliminasi dan subtitusi jadi bentuknya yang pertama jadi 2 P + 2 Q + 3 r = 2 lalu yang kedua itu Min 4 P + Q + R = 5 yang ketiga itu adalah 4 p + 3 Q + 3 r = 2 lalu kita kan pertama dikalikan dengan 2 dan kita akan gunakan yang kedua 4 P + 4 Q + 6 R = 4albumin 4 P + Q + 6 R = 5 lalu kita kan jumlahkan jadi 5 Q + 12 R = 9 ini yang sistem Bhineka 4 lalu kita akan gunakan yang kedua dan yang ketiga jadi min 4 P + Q + 6 R = 54 p + 3 Q + 3 r = 2 kita akan di kita dapatkan 4 Q + 9 R = 7 berarti ini sistem linear yang ke-5 yang keempat dan yang kelima tetapi yang keempatnya kita akan kalikan dengan 3 dan yang kelimanya cetakan kalikan dengan 4 15 R = 27 jadi 16 Q + 30 R = 28 kita kan kurang kan jadi min Q = min 1 jadinya sama dengan 1 lalu kita akan gunakan di 5 dikalikan qibata dikalikan dengan 1 + 12 R = 9 jadi 12 R = 4 r nya = 1 per 3 lalu kita akan gunakan yang pertama T2 dikalikan dengan P + 2 x dengan Kiki nya 1 + dengan 3 dikalikan dengan 1 per 3 = i 2 P + 2 + 1 = 2 jadi 2 P = min 1 Jadi ip-nya sekarang kita akan cari nilai x y dan z nya berarti di sini p-nya = min 1 per 2 berarti Kakak Masukkan 1 per x + 1 = min 1 per 2 jadi kita dapatkan x-nya itu adalah 2 = min x min 1 x = min 3 lalu mencari untuk yang kakinya untuk yg Berarti tadi kita dapatkan 1 lalu kita akan kembalikan lagi jadi 1 per y min 3 = 1 jadi y min 3 = 1 Y = 4 dan yang terakhir yang sama dengan 1 per 3 tak kembalikan jadi 1 per x + 2 = 1 per 3 jadi 3 = Z + 2 Z = 1 jadi kita mendapatkan x y = min 3 Y = 4 dan z = 1 berarti himpunan penyelesaiannya batik yang X lebih dahulu lalu diikuti dengan y dan diikuti dengan z jadi jawabannya adalah yang sampai jumpa pada soal berikut nya Diketahuisistem persamaan tiga variabel berikut: β©β¨β§ x+12 + yβ32 + z+23 = 2 (1) x+1β4 + yβ31 + z+26 = 5 (2) x+14 + yβ33 + z+23 = 2 (3) Iklan PN P. Nur Master Teacher Jawaban terverifikasi Pembahasan Ingat bahwa persamaan linear adalah persamaan yang mengandung variabel berpangkat satu. - Penyelesaian Sistem Persamaan Linear Tiga Variabel SPLTV membutuhkan beberapa metode untuk mempermudah dalam menemukan solusi. Metode tersebut di antaranya yaitu determinan dan invers. Simak contoh penyelesaiannya di bawah ini!Soal Tentukan penyelesaian sistem persamaan linear berikut ini dengan metode determinan dan invers matriks. 2x-y+z=33x-2y+z=24x+y-z=3 Langkah pertama untuk menentukan himpunan penyelesaian SPLTV di atas adalah dengan mengubah bentuknya menjadi matriks AX=B. FAUZIYYAH Pendefinisian sistem persamaan linear ke dalam matriks AX=B Baca juga Mendefinisikan Sistem Persamaan Linear Tiga Variabel SPLTV Metode Determinan Pada metode determinan, yang pertama dilakukan adalah mencari determinan dari matriks A D, matriks x Dx, matriks y Dy, dan matriks z Dz. Kemudian hitung himpunan penyelesaiannya dengan membagi masing-masing nilai determinan matriks x,y,z dengan determinan matriks A. Pertama, kita hitung determinan dari matriks A D sebagai berikut FAUZIYYAH Determinan matriks A D Kemudian adalah hitung determinan dari matriks x Dx sebagai berikut FAUZIYYAH Determinan matriks x Dx Baca juga Pertidaksamaan Nilai Mutlak Linear Satu Variabel Selanjutnya menghitung determinan dari matriks y Dy sebagai berikut FAUZIYYAH Determinan matriks y Dy Dan yang terakhir adalah menghitung determinan dari matriks z Dz FAUZIYYAH Determinan matriks z Dz Berdasarkan perhitungan yang telah kita lakukan, diperoleh determinan D bernilai 6, determinan Dx bernilai 6, determinan Dy bernilai 12, dan determinan Dz bernilai 18. Kemudian kita hitung penyelesaian x, y, z sebagai berikut FAUZIYYAH Perhitungan nilai x, y, dan z Baca juga Persamaaan Nilai Mutlak Linear Satu Variabel Sehingga diperoleh bahwa himpunan penyelesaian dari SPLTV dengan menggunakan metode determinan adalah {1,2,3}. Metode Invers Pada metode invers, himpunan penyelesaian dari SPLTV diketahui dengan menentukan determinan dari matriks A, kemudian kofaktor dari matriks A, dan adjoin dari matriks A. Pertama, mencari determinan dari A, yang mana telah kita lakukan pada metode determinan, bahwa determinan matriks A bernilai 6. Kemudian menentukan kofaktor A sebagai berikut FAUZIYYAH Penentuan kofaktor matriks A Baca juga Imbalan Hanya Satu Variabel Pendukung, Tak Otomatis Turunkan Kasus Korupsi Kofaktor A digunakan untuk menentukan adjoin, yaitu transpose dari kofaktor A FAUZIYYAH Penentuan adjoin matriks A Sehingga kita dapat menghitung himpunan penyelesaian sebagai berikut FAUZIYYAH Perhitungan nilai x, y, dan z Pada pernyataan di atas diperoleh bahwa himpunan penyelesaian dari SPLTV dengan menggunakan metode invers adalah {1,2,3}. Baca juga Metode Eliminasi dan Substitusi SPLTV Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel. Diketahuisistem persamaan linear tiga variabel berikut. x + 2y + 4z = 0 .. (1) 2x - y + 5z = 27 .. (2) 3x + y - 3z = 15 .. (3) Himpunan penyelesaian sistem persamaan tersebut adalah. a. { (-8,-6, 1)} b. { (-8, 6, 1)} d. { (1,6,1)} e. { (8,-6, 1)} C. { (1, -6, 1)} 12rb+ 4 Jawaban terverifikasi Iklan OO Osmond O Level 1 . 219 210 400 315 420 491 390 442